THz Radar: Non-contact physiological sensing

The use of terahertz waves for detection and ranging offers a higher resolution and smaller aperture as compared to the microwave radar. However, despite the recently emerging terahertz sources and detectors applicable to radar front-ends, integration of a phased array radar system is still challenging due to the lack of phase shifters and circulators, the basic components for beam steering and input-output isolation. Here we demonstrate leaky-wave coherence tomography, a method to integrate a terahertz radar system using a pair of reversely connected leaky-wave antennas. With this architecture, we implement beam steering and homodyne detection in one package and thereby identify the direction and range toward targets without using phase shifters, circulators, half-mirrors, lenses, or mechanical scanners. Our work paves the way to a high resolution, penetrable, and compact radar system, which is suitable to be equipped even on mobile devices and drones for a wide range of applications. As an example, we demonstrate in-situ human heartbeat detection by measuring the small displacement of the chest of subjects through the clothes, which provides information as with a stethoscope but remotely.